ON SUFFICIENT OPTIMALITY CONDITIONS

PMM Vol. 42, No.6, 1978, pp. 1131-1135
Iu. B. SEISOV
(Askhabad)
(Received September 1, 1977)
Sufficient conditions of optimality of the control in a nonlinear system are given. This involves a demand for existence of a function with specified properties. If this function is defined in a special manner, then the theorem derived in the paper yields the known theorem of Krotov [1]. A certain relaxation of the sufficient conditions given in [1] is obtained for the problems of the time optimal response in autonomous systems.

1. Let the controlled object be characterized by the phase coordinates $x=\left(x^{1}, x^{2}\right.$,, x^{n}) in an n-dimensional Euclidean space E^{n} the law of variation of which is described by the differential equation

$$
\begin{align*}
& d x / d t=f(x, u, t) \tag{1.1}\\
& \left(u=\left(u^{1}, u^{2}, \ldots, u^{r}\right), j=\left(f^{1}, f^{2}, \ldots, f^{n}\right)\right)
\end{align*}
$$

where u is an r-dimensional control vector. The components of the vector function $f(x, u, t)$ are assumed to be continuous in all its arguments, and continuously differentiable with respect to the variables $x^{i}, i=1,2, \ldots, n$. We adopt, as the admissible controls, the set of all measurable functions $u(t), t_{0} \leqslant t \leqslant t_{1}$ the values of which satisfy the restriction $u \in U$ where U is a compact in E^{r}.

Let Ω_{0} and Ω_{1} represent some admissible closed sets in E^{n}, and Ω an open set. The time instants t_{0} and t_{1} are not fixed. We set $t_{0} \in T_{0}=\left[\tau_{0}, \tau_{0}{ }^{\prime}\right], t_{1} \in$ $T_{1}=\left[\tau_{1}, \tau_{1}{ }^{\prime}\right]$.

The problem of optimal control consists of finding, from amongst all admissible controls which transport the object (1.1) from the position $x_{0} \in \Omega_{0}$ to the position $x_{1} \in \Omega_{1}$, such a control $u(t), t_{0} \leqslant t \leqslant t_{1}$ and the corresponding trajectory $x(t), x(t)$ $\in \Omega, t_{0} \leqslant t \leqslant t_{1}, x\left(t_{0}\right)=x_{0}, x\left(t_{1}\right)=x_{1}$, which together impart the possible minimum value to the functional

$$
I=\int_{t_{0}}^{t_{1}} f^{0}(x, u, t) d t
$$

The function $f^{\circ}(x, u, t)$ is assumed to satisfy the same condition as the components of the vector function $f(x, u, t)$.

Let the continuously differentiable function $\varphi\left(x^{\circ}, x, t\right)$ of $n+2$ variables x°, $x^{1}, x^{2}, \ldots, x^{n}, t$ be given. We introduce the function and the sets

$$
\begin{aligned}
& R\left(x^{\circ}, x, u, t\right)=\frac{\partial \varphi}{\partial x^{\circ}} f^{\circ}+\frac{\partial \varphi}{\partial x} f+\frac{\partial \varphi}{\partial t} \\
& Q=E^{1} \times \Omega \times\left[\tau_{0}, \tau_{1}^{\prime}\right] \\
& \Pi=\left\{\left(x^{\circ}, x, t\right): \varphi\left(x^{\circ}, x, t\right) \geqslant 0,\left(x^{\circ}, x, t\right) \in Q\right\}
\end{aligned}
$$

Theorem 1. The sufficient condition for the process $\left\{x_{*}(t), u_{*}(t)\right\}, x_{*}(t)$ $\in \Omega,\left\{x_{*}\left(t_{0}{ }^{*}\right), t_{0}{ }^{*}\right\} \in \Omega_{0} \times \quad T_{0},\left\{x_{*}\left(t_{1}{ }^{*}\right), t_{1}{ }^{*}\right\} \in \Omega_{1} \times T_{1}$ to be optimal is, that a function $\varphi\left(x^{0}, x, t\right)$ continuously differentiable on the set Q exists such, that the following conditions hold:

$$
\begin{aligned}
& \text { A) } \max _{(x, t) \in \mathcal{R}_{0} \times T_{0}} \varphi(0, x, t)=\varphi\left(0, x_{*}\left(t_{0}^{*}\right), t_{0}^{*}\right)=0 \\
& \text { B) } \sup _{u \in U,\left(x^{0}, x, t\right) \in \Pi} R\left(x^{\circ}, x, u, t\right) \leqslant 0 \\
& R\left(I_{*}(t), x_{*}(t), u_{*}(t), t\right)=0, t_{0}^{*} \leqslant t \leqslant t_{1}^{*} \\
& \text { C) } \varphi(\xi, x, t)>0, \quad x \in \Omega_{1}, \quad t \in T_{1}, \quad \xi<I_{*}\left(t_{1}^{*}\right)
\end{aligned}
$$

where

$$
I_{*}(t)=\int_{t_{0^{*}}}^{t} f^{\circ}\left(x_{*}(t), u_{*}(t), t\right) d t
$$

Proof. Let us consider the following system of differential equations in the space E^{n+2} :

$$
\begin{equation*}
\frac{d x^{\circ}}{d t}=f^{\circ}(x, u, t), \quad \frac{d x}{d t}=f(x, u, t), \frac{d x^{n+1}}{d t}=1 \tag{1.2}
\end{equation*}
$$

By choosing an arbitary admissible control $u(t), t_{0} \leqslant t \leqslant t_{1}$ and the initial Cauchy conditions

$$
\begin{equation*}
x^{\circ}\left(t_{0}\right)=0, x\left(t_{0}\right)=x_{0} \in \Omega_{0}, \quad x^{n+1}\left(t_{0}\right)=t_{0} \in T_{0} \tag{1.3}
\end{equation*}
$$

we define a trajectory

$$
\begin{equation*}
x^{\circ}(t), x(t), x^{n+1}(t) \equiv t, t_{0} \leqslant t \leqslant t_{1} \tag{1.4}
\end{equation*}
$$

of the system (1.2). The equation

$$
\begin{equation*}
\varphi\left(x^{\circ}, x, t\right)=0 \tag{1.5}
\end{equation*}
$$

separates the set Q into two subsets, Let us denote by Q^{+}the subset of Q on which the function $\varphi\left(x^{\circ}, x, t\right)$ is positive, and by Q^{-}the other subset. Condition (A) implies that the initial set (1.3) is completely contained in Q^{-}and the point ($\left.0, x_{*}\left(t_{0}{ }^{*}\right), t_{0}{ }^{*}\right)$ lies on the surface (1.4). Condition (B) implies that the surface (1.5) is "impermeable"; i. e. the trajectory of the system (1.2) emerging from the set (1.3) will remain within Q^{-}, under any admissible control $u(t), t_{0} \leqslant t \leqslant t_{1}, t_{0} \in T_{0}, t_{1} \in T_{1}$, during the whole process. At the same time, the integral curve

$$
\left(x_{*^{0}}(t)=l_{*}(t)\right), \quad x_{*}(t), \quad x_{*}^{n+1}(t)=t, \quad t_{0} * \leqslant t \leqslant t_{1}^{*}
$$

lies on the surface (1.5), i. e.

$$
\begin{equation*}
\varphi\left(I_{*}(t), x_{*}(t), t\right)=0, \quad t_{0} * \leqslant t \leqslant t_{1} * \tag{1.6}
\end{equation*}
$$

Let us assume that the process in question is not optimal, i. e. that there exists a process $\{x(t), u(t)\}, t_{0} \leqslant t \leqslant t_{1}, x(t) \subset \Omega,\left\{x\left(t_{0}\right), t_{0}\right\} \in \Omega_{0} \times T_{0},\left\{x\left(t_{1}\right), t_{1}\right\} \in \Omega_{1} \times T_{1}$, such, that

$$
\begin{equation*}
I<I_{*}\left(t_{\perp}{ }^{*}\right) \tag{1.7}
\end{equation*}
$$

Consider the integral curve (1.4) of the system (1.2). Since $x^{\circ}\left(t_{0}\right)=0 \quad x\left(t_{0}\right) ש$ $\Omega_{0}, t_{0} \in T_{0}$, and $u(t), t_{0} \leqslant t \leqslant t_{1}$ is an admissible control, the integral curve lies, as we showed before, in the subset Q^{-}, i.e.

$$
\varphi\left(x^{\circ}(t), x(t), t\right) \leqslant 0, \quad t_{0} \leqslant t \leqslant t_{1}
$$

But condition (C) and the inequality (1.7) together imply that

$$
\varphi\left(x^{\circ}\left(t_{1}\right), x\left(t_{1}\right), t_{1}\right)>0
$$

and the resulting contradiction proves the theorem.
If the process $\left\{x_{*}(t), u_{*}(t)\right\}$ satisfies the condition of Theorem 1, then we have the following inequality:

$$
\begin{equation*}
\varphi\left(I_{*}\left(t_{1}^{*}\right), x, t\right) \geqslant 0, x \in \Omega_{1}, t \in T_{1} \tag{1.8}
\end{equation*}
$$

Indeed, let the opposite inequality hold at some point $x=a \subseteq \Omega_{1}$ and $t=\mu \in T_{1}$:

$$
\varphi\left(I_{*}\left(t_{1}^{*}\right), a, \mu\right)=b<0
$$

From condition (C) we have, for any $\varepsilon>0$,

$$
\varphi\left(I_{*}\left(t_{1} *\right)-\varepsilon, a, \mu\right)=b-\frac{\partial \varphi\left(I_{*}\left(t_{1} *\right), a, \mu\right)}{\partial x^{\circ}} \varepsilon+o(\varepsilon)>0
$$

and this is impossible, since $b<0$ by definition.
Finally we note, that the inequality (1.8) becomes an equality at the point $x_{*}\left(t_{1}{ }^{*}\right)$ $\in \Omega_{1}, t_{1}{ }^{*} \in T_{1}$. This follows directly from (1.6) at $t=t_{1}{ }^{*}$.

All this, makes possible the following assertion:

$$
\min _{(x, t) \in \Omega_{1} \times T_{1}} \varphi\left(I_{*}\left(t_{1} *\right), x, t\right)=0
$$

The above expresssion formally coincides with condition (A) of Theorem 1; it is not however equivalent to condition (C), being substantially weaker.

If we define the function $\varphi\left(x^{\circ}, x, t\right)$ in the following form:

$$
\begin{equation*}
\varphi\left(x^{\circ}, x, t\right)=K(x, t)-x^{\circ} \tag{1.9}
\end{equation*}
$$

then a theorem due to Krotov [1] follows from Theorem 1. Theorem 1 given above ans stating the sufficient conditions of optimality, is a direct generalization of the results of [3].
2. Let the behavior of the object be described by

$$
x^{\cdot}=f(x, u)
$$

Consider the problem of fast response when $\Omega_{0}=\left\{\mathbf{x}_{0}\right\}, \Omega_{1}=\left\{\mathbf{x}_{1}\right\}$. Let $\{x(t), u(t)\}$, $0 \leqslant t \leqslant t_{1}$ be a process satisfying the Pontriagin maximum principle [4], and $\psi(t)$, $0 \leqslant t \leqslant t_{1}$ be a vector function corresponding to this process. Let us set

$$
c(\psi, x)=\max _{u \in U}(\psi, f(x(u))
$$

Then provided that the control $u(t), 0 \leqslant t \leqslant t_{1}$ is a piecewise continuous function, the following corollary can be obtained from Theorem 1.

Theorem 2. Let the function $c(\psi, x)$ be such that

$$
\begin{equation*}
c(\psi(t), x)-c(\psi(t), x(t))-\left(\frac{\partial c(\psi(t), x(t))}{\partial x}, x-x(t)\right) \leqslant 0 \tag{2.1}
\end{equation*}
$$

when $(\psi(t), x-x(t)) \geqslant 0$, and let the following condition hold:

$$
\begin{equation*}
\left(\psi(t), x_{\mathrm{I}}-x(t)\right)>0,0 \leqslant t<t_{1} \tag{2.2}
\end{equation*}
$$

Then the process $\{x(t), u(t)\}, 0 \leqslant t \leqslant t_{1}$ is optimal with respect to the time optimal response.

Proof. To apply Theorem 1 to the problem of time optimal response we must put $f^{\circ} \equiv 1$ and use the time t as the coordinate x°. Then, instead of the function $\varphi\left(x^{\circ}, x, t\right)$ we shall have $\varphi_{1}(t, x)$ and instead of $R\left(x^{\circ}, x, u, t\right)$, the function

$$
R_{1}(t, x, u)=\frac{\partial \varphi_{1}}{\partial t}+\frac{\partial \varphi_{1}}{\partial x} f(x, u)
$$

and the following sets, respectively

$$
Q_{1}=\left[0, t_{1}\right] \times E^{n}, \Pi_{1}=\left\{(t, x): \varphi_{1}(t, x) \geqslant 0,(t, x) \in Q_{1}\right\}
$$

For the process $\{x(t), u(t)\}$ to be optimal, it is sufficient that a function $\varphi_{1}(t, x)$, continuously differentiable on the set Q_{1} exists such that the following conditions hold:

$$
\begin{aligned}
& \left.\mathrm{A}_{1}\right) \varphi_{1}(0, x(0))=0 \\
& \left.\mathrm{~B}_{1}\right) \sup _{u \in U,(t, x) \in \Pi_{1}} R_{1}(t, x, u) \leqslant 0 \\
& \left.\mathrm{C}_{1}\right) \varphi_{1}(t, x)>0, \quad t<t_{1}
\end{aligned}
$$

Let us set

$$
\begin{equation*}
\Phi_{1}(t, x)=(\Psi(t), x-x(t)) \tag{2.3}
\end{equation*}
$$

The above function is continuously differentiable everywhere on the set Q_{1} except at the points of a finite number of planes $t=\tau_{i}, i=1,2, \ldots, N$ where τ_{i}. denote points on the segment $\left[0, t_{1}\right]$ at which the function $u(t)$ has first order discontinuities. We note that Theorem 1 remains valid when the function ceases to be continuously differentiable at the points of a finite number of planes

$$
t=\tau_{i}(i=1,2, \ldots, N), \quad \tau_{i}=\mathrm{const}
$$

When the function $\varphi_{1}(t, x)$ is given by $(2,3)$, condition $\left(A_{1}\right)$ is fulfilled automatically and condition (B_{1}) assumes the form

$$
\begin{equation*}
\sup _{u \in U} R_{1}\left(l_{1} x, u\right) \leqslant 0, \quad 0 \leqslant t \leqslant t_{1}, \quad(\psi(t), x-x(t)) \geqslant 0 \tag{2.4}
\end{equation*}
$$

Let us transform the left-hand side of the inequality (2.4), with the particular form (2.3) of the function $\varphi_{1}(t, x)$ taken into account. We have

$$
\begin{align*}
& \frac{\partial \varphi_{1}(t, x)}{\partial x}=\psi(t), \quad \frac{\partial \varphi_{1}(t, x)}{\partial t}=\left(\psi^{*}(t), x-x(t)\right)- \tag{2,5}\\
& (\psi(t), x(t))=-\left(\frac{\partial c(\psi(t), x(t))}{\partial x}, x-x(t)\right)-c(\psi(t), x(t))
\end{align*}
$$

Here we have used the Pontriagin maximum principle

$$
\left(\psi(t), f(x(t), u(t))=\max _{u \in U}(\psi(t), f(x(t), u))=c(\psi(t), x(t))\right.
$$

and the relation $[2] \psi^{\circ}(t)=-\partial c(\psi(t), x(t)) / \partial x$, which holds under the assumption that the function $c(\psi, x)$ is differentiable.

Using the relations (2.5) we conclude, that $R_{1}(t, x, u) \leqslant Q(t, x)$ where $Q(t, x)$ is the left-hand side of the inequality (2.1). Therefore the condition (2.1) guarantees the validity of condition (B_{1}), and condition (C_{1}) can be written in the form (2.2), which completes the proof of Theorem 2.

In the theorem given in [2] the inequality (2.1) was required to hold over the whole space E^{n}.
3. It can be seen from the formula (1.9) that the sufficient conditions of optimality due to Krotov [1] follow from Theorem 1 provided that the equation $\varphi\left(x^{\circ}, x, t\right)=0$ can be solvedfor x°, i. e. the inequality

$$
\begin{equation*}
\partial \varphi\left(x^{\circ}, x, t\right) / \partial x^{\circ} \neq 0 \tag{3.1}
\end{equation*}
$$

must hold over the whole domain of variation of the variables $(x, t) \in \Omega \times\left[\tau_{0}, \tau_{1}\right]$.
Let us assume that $f^{\circ}(x, u, t)>0$ for all $u \in U, x \in \Omega, t \in\left[\tau_{0}, \tau_{1}{ }^{\prime}\right]$. Let $\left\{x_{*}(t), u_{*}(t), \Psi^{*}(t)\right\}, t_{0} \leqslant t \leqslant t_{1}$ be the Pontriagin extremal in the problem of Sect.1. The equation

$$
x^{\circ}=\int_{i_{0}}^{t} f^{\circ}\left(x_{*}(\tau), u_{*}(\tau), \tau\right) d \tau
$$

defines uniquely the function $t=\xi\left(x^{\circ}\right)$ by virtue of the assumption made with respect to the function $f^{\circ}(x, u, t)$. As in Sect. 2 setting

$$
\varphi\left(x^{\circ}, x, t\right)=\left(\psi^{*}\left(\xi\left(x^{\circ}\right)\right), x-x_{*}\left(\xi\left(x^{\circ}\right)\right)\right)+\psi^{*}+1\left(\xi\left(x^{\circ}\right)\right)\left(t-\xi\left(x^{\circ}\right)\right)
$$

we can obtain the sufficient conditions of optimality for the extremal $\left\{x_{*}(t), u_{*}(t)\right.$, $\left.\psi^{*}(t)\right\}, t_{0} \leqslant t \leqslant t_{1}$, similar to those formulated in Theorem 2. The equation

$$
\left(\psi^{*}\left(\xi\left(x^{\circ}\right)\right), x-x_{*}\left(\xi\left(x^{\circ}\right)\right)\right)+\psi^{*}+1\left(\xi\left(x^{\circ}\right)\right)\left(t-\xi\left(x^{\circ}\right)\right)=0
$$

is not solved for x° and, in addition, the condition (3.1) does not hold except in the trivial cases.

REFERENCES

1. Krotov, V. F. and Gurman, V. I. Methods and Problems of Optimal Control. M., Nauka, 1973.
2. Blagodatskikh, V. L. Sufficient conditions of optimality for differential inclusions. Lzv. Akad. Nauk. SSSR, Ser. matem., Vol. 38, No. 3, 1974.
3. S eis ov. Iu. B. Sufficient conditions of optimality in the problem of fast response. Izv. Akad. Nauk TurkmSSR, Ser. fiz.-tekhn., khim, i geog. nauk, No. 2, 1976.
4. Pontriagin, L. S., Boltianskii, V. G., Gamkrelidze, R. V. and M ishchenko, E. F. The Mathematical Theory of Optimal Processes. (English translation) Pergamon Press, Book No. 10176, 1964.
